Do Projektu iAutomatyka dołączyli:

Publikacja zgłoszona do 🎁 Konkursu iAutomatyka

Komunikacja sterownika IFM z podwoziem – Protokół J1939


Niniejszym artykułem chciałbym zachęcić do krótkiej lektury na temat komunikacji podwozia ze sterownikiem mobilnym IFM (np. CR7506, CR7032, czy CR7132) za pomocą protokołu J1939. Z uwagi na moje dotychczasowe doświadczenie w strefie pojazdów mobilnych, artykuł oparty będzie o wiedzę z zakresu aplikacji w środowisku CoDeSys na bazie bibliotek i sterownika firmy IFM electronic. Felieton kieruję głównie do osób, firm, których profil działalności ukierunkowany jest na pojazdy specjalne wykonywane na ramie podwozia. Mam tutaj na myśli maszyny typu śmieciarki, mleczarki, podnośniki koszowe, koparki, itp.

DLACZEGO J1939?

Wyobraźmy sobie pojazd specjalny (np. pojazd straży pożarnej).W aucie poziomu zabudowy potrzebujemy kontrolować sygnały typu: start/stop silnika, zmniejszanie/zwiększanie prędkości obrotowej silnika, informację o stanie poziomu paliwa, stan położenia hamulca ręcznego, kontrola świateł i klaksona, itd. Podchodząc do zagadnienia w sposób klasyczny, analogowy, tj. jedna funkcja – jeden przewód, dochodzimy do sytuacji, gdzie z podwozia będzie poprowadzona pokaźna wiązka przewodów do zabudowy. Mało tego, należy wykonać szczegółową analizę dotyczącą przekroju przewodów, sterowania „plusem/masą”, dodatkowych przekaźników, czy innych elementów elektronicznych no i oczywiście trzeba wszystkie funkcje fizycznie w kabinie odnaleźć i podłączyć … to wszystko wymaga nakładu dużej ilości czasu i żmudnej pracy z adaptacją kabiny.


W przeciwieństwie do metody analogowej mamy do dyspozycji metodę cyfrową przy zastosowaniu protokołu J1939. Na pewno przy pierwszym projekcie pojawią się wątpliwości. To oczywiste i ludzkie, ja też takowe miałem, jak czegoś nie znam to wolę tego unikać. Jednakże czas przeznaczony na poznanie zagadnienia zwróci się z nawiązką przy kolejnych projektach. Zachętą do korzystania z J1939 niech będzie liczba przewodów jaką należy podłączyć – całe dwie żyły do komunikacji CAN, plus ewentualny rezystor 120Ω (większość podwozi wyposażonych jest już w rezystor 120Ω – drugi zatem podłączamy po stronie zabudowy, aby zapewnić zamkniętą pętlę magistrali CAN). Magistralę CAN podłączamy do sterownika do wejścia CAN. I to jest cała instalacja, którą należy poprowadzić do sterownika zabudowy.

Poniżej znajduje się graficzne przedstawienie i lokalizacja potrzebnego złącza do komunikacji CAN na przykładzie podwozia Mercedes.

Rys. 1. Lokalizacja modułu PSM w kabinie pojazdu.

Rys. 2. Wygląd modułu PSM.

Rys. 3. Opis pinów złącz modułu PSM.

Parametryzacja podwozia

Pierwszą fazą wykonania pojazdu jest etap wytypowania odpowiedniego podwozia. Zanim dostawca podwozia przygotuje swój pojazd powinien otrzymać wymagania od producenta zabudowy. W aspekcie zapewnienia komunikacji z wykorzystaniem protokołu J1939 ważna jest deklaracja obsługi takiego protokołu. Sprowadza się to do montażu odpowiedniego modułu w podwoziu (MAN – moduł KSM, Mercedes – moduł PSM, Volvo – moduł BBM, itd.), który zapewni taką komunikację. W większości przypadków, gdy podwozie wyposażone jest w taki moduł, możliwe jest już odbieranie ramek CAN z podwozia. Jednakże, aby uzyskać komunikację dwukierunkową, potrzebna będzie ingerencja serwisanta danego podwozia. Jego zadaniem będzie uruchomienie dwukierunkowej komunikacji CAN, a co za tym idzie możliwość sterowania funkcjami podwozia z poziomu zabudowy.  Odbywa się to przy pomocy oprogramowania serwisowego i wgrania nowych parametrów do sterownika podwozia.


APLIKACJA – CoDeSys

Kolejnym etapem jest przygotowanie aplikacji do obsługi potrzebnych sygnałów. Producenci podwozi udostępniają dokumentację komunikatów CAN. Jednakże przygotowanie ramek CAN, bit po bicie, do obsługi danych funkcji podwozia na podstawie dokumentacji jest wymagającym procesem. Tutaj z pomocą przychodzą biblioteki przygotowane przez firmę IFM electronic do wykorzystania w środowisku CoDeSys. Są one ściśle ukierunkowane do konkretnego producenta podwozi (Caterpillar, Cummins, DAF, Daimler, Duetz, Fiat, Kubota, MAN, Perkins, Renault, Scania, Volvo, Yanmar) . Mamy wówczas do dyspozycji bogatą strukturę sygnałów.

Poniżej znajduje się fragment dokumentacji komunikatów CAN dla podwozia Mercedes (Daimler).  Zawiera ona następujące informacje:

  • transmisja z podwozia do zabudowy
  • identyfikator CAN: 18FE5DEB
  • czas cyklu komunikatu: 500ms
  • długości ramki: 8 bajtów

Następnie opisany jest podział 8 bajtów ramki na poszczególne bajty:

  • bajty 1 i 2: dolna granica obrotów silnika
  • bajty 3 i 4: górna granica obrotów silnika
  • bajt 5: prędkość maksymalna pojazdu
  • bajty 6 – 8: niezdefiniowane

Kolejna grafika obrazuje reprezentację w/w sygnałów za pomocą biblioteki ifm_Daimler_PSM3_CAN2 w CoDeSys’ie.

Przykładowa struktura t_BODYMESSAGE_1_2_GPM12_DAIMLER_PSM3 zawiera już przygotowane, zdeklarowane sygnały: wEngSpeedUpperLimit, wEngSpeedLowerLimit, byMaxVehSpeedLimit bezpośrednio do wykorzystania w aplikacji.

Do inicjalizacji komunikacji należy wykorzystać przygotowany blok funkcyjny DAIMLER_PSM3.

Większość bloków funkcyjnych dostępnych z zasobów bibliotek posiada dokładne opisy/komentarze poszczególnych wejść/wyjść bloku dzięki czemu w łatwy sposób można wykonać ich inicjalizację. Jest to na tyle pomocne, że nie trzeba wyszukiwać potrzebnych informacji w obszernej dokumentacji podwozia, (zwykle taka dokumentacja nie jest w języku polskim) a jedynie wykorzystać dane zawarte w komentarzu bloku. Napisanie kilku linijek kodu jest już wówczas banalną kwestia do wykonania.

Podsumowanie

Konfiguracja podwozia z zabudową przy wykorzystaniu protokołu J1939 daje szereg zalet, od zmniejszenia liczby przewodów, niewielkiej ingerencji w instalację podwozia, poprzez optymalizację wejść/wyjść sterownika do obsługi żądanych funkcji, aż po oszczędność czasu w procesie adaptacji kabiny – a przecież czas to pieniądz. Gdy sięgam pamięcią, kiedy to mnie przekonywano do wykonania pierwszego pojazdu z wykorzystaniem protokołu J1939, czułem wielką niechęć, a nawet strach przed nieznanym. Jednak patrząc teraz w przeszłość, na kilkadziesiąt już pojazdów, które funkcjonują i pracują w oparciu o protokół J1939, nie wyobrażam sobie innego rozwiązania, a tym bardziej gdy mamy do czynienia z produkcją seryjną.

Powyższym artykułem zachęcam do podjęcia próby przełamania swoich stereotypów, a zapewniam, że ewentualny sukces zaowocuje samymi korzyściami. Nie jest to może najłatwiejszy obszar poruszania się dla automatyka/programisty, ale mamy do dyspozycji wszystkie potrzebne narzędzia (przygotowane podwozia, dokumentacja, sterowniki IFM, bogate biblioteki) aby osiągnąć założony cel i napawać się dumą za swoje osiągnięcia. Ponadto zdobytego doświadczenia nikt już Państwu nie zabierze. W przypadku chwili zawahania jestem do Państwa dyspozycji i zapraszam do kontaktu.

Artykuł został nagrodzony w Konkursie iAutomatyka – edycja Marzec 2020. Nagrodę Kurs programowania sterownika easyE4  dostarcza ambasador konkursu, firma iAutomatyka.


30 marca 2020 / Kategoria: , ,

Reklama

Newsletter

Zapisz się i jako pierwszy otrzymuj nowości!

Zapoznałem się i akceptuję klauzulę informacyjną.



.

NAJNOWSZE PUBLIKACJE OD UŻYTKOWNIKÓW I FIRM

>KLIKNIJ<

Technologia push-in oraz inne usprawnienia ułatwiające pracę z przekaźnikami

Technologia push-in oraz inne usprawnienia ułatwiające pracę z przekaźnikami

>KLIKNIJ<

Sterowniki PFC200 do zarządzania produkcją energii z OZE

Sterowniki PFC200 do zarządzania produkcją energii z OZE

>KLIKNIJ<

Jakie narzędzia znajdziesz w skrzynce automatyka?

Jakie narzędzia znajdziesz w skrzynce automatyka?

>KLIKNIJ<

Zastosowanie modeli uczenia maszynowego może być łatwe, nawet bez wiedzy eksperckiej w zakresie nauki o danych

Zastosowanie modeli uczenia maszynowego może być łatwe, nawet bez wiedzy eksperckiej w zakresie nauki o danych

>KLIKNIJ<

Finder MasterIN system – pewne i szybkie łączenie profesjonalnego układu automatyki

Finder MasterIN system – pewne i szybkie łączenie profesjonalnego układu automatyki

>KLIKNIJ<

Kompaktowy falownik z możliwościami flagowców | Unboxing FR-E800

Kompaktowy falownik z możliwościami flagowców | Unboxing FR-E800

>KLIKNIJ<

FANUC Polska dołącza do projektu NAZCA 4.0

FANUC Polska dołącza do projektu NAZCA 4.0

>KLIKNIJ<

Stabilność produkcji dla Twojej maszyny

Stabilność produkcji dla Twojej maszyny

>KLIKNIJ<

Konwersja protokołów przemysłowych – Hilscher NT-50 i NT-100

Konwersja protokołów przemysłowych – Hilscher NT-50 i NT-100

>KLIKNIJ<

PATCHCORDY LAN I INDUSTRIAL ETHERNET

PATCHCORDY LAN I INDUSTRIAL ETHERNET

>KLIKNIJ<

Jak aparatura Eaton wspomaga działanie infrastruktury krytycznej?

Jak aparatura Eaton wspomaga działanie infrastruktury krytycznej?

>KLIKNIJ<

Pierwsze podłączenie i przygotowanie Codesys do pracy ze sterownikiem PLC | Kurs programowania w Codesys odc. 2

Pierwsze podłączenie i przygotowanie Codesys do pracy ze sterownikiem PLC | Kurs programowania w Codesys odc. 2

>KLIKNIJ<

Robotyzacja procesów – bezpłatny audyt w Twoim zakładzie

Robotyzacja procesów – bezpłatny audyt w Twoim zakładzie

>KLIKNIJ<

Kompaktowy i precyzyjny 6-osiowy robot przemysłowy

Kompaktowy i precyzyjny 6-osiowy robot przemysłowy

>KLIKNIJ<

Fabryka Przyszłości – zaczynaj małymi krokami

Fabryka Przyszłości – zaczynaj małymi krokami

>KLIKNIJ<

Roboty REECO w produkcji elektroniki

Roboty REECO w produkcji elektroniki

>KLIKNIJ<

Dokładne pomiary i niezawodne wykrywanie małych części dzięki czujnikom serii R20x Pepperl+Fuchs

Dokładne pomiary i niezawodne wykrywanie małych części dzięki czujnikom serii R20x Pepperl+Fuchs

>KLIKNIJ<

Masz niestandardowe potrzeby zakupowe? Złóż zapytanie ofertowe na MerXu

Masz niestandardowe potrzeby zakupowe? Złóż zapytanie ofertowe na MerXu

>KLIKNIJ<

Bosch Rexroth dostarcza napęd do lodołamaczy

Bosch Rexroth dostarcza napęd do lodołamaczy

>KLIKNIJ<

IoT Box – gotowe rozwiązanie z pogranicza OT i IT

IoT Box – gotowe rozwiązanie z pogranicza OT i IT





MOŻESZ SIĘ TYM ZAINTERESOWAĆ

  • 0 PLN
    Szkolenie TwinCAT 3 NC PTP jest rozwinięciem szkolenia, na którym uczymy programowania i jest przeznaczone dla tych inżynierów, którzy planują wdrażać aplikacje typu MOTION – sterowanie silnikami Servo bez interpolacji lub z interpola...
    Czas trwania: 3 dni
  • 799 PLN
    Szkolenie jest wprowadzeniem do systemu sterowania PSS4000 i środowiska programowania PAS4000. W jego trakcie omówiona zostanie zarówno struktura sprzętowa, jak i programowanie, a także diagnostyka kompletnego systemu sterowania. Poruszane ...
    Czas trwania: 8h
    Link: Terminy
  • Inteligentny chwytak równoległy SCHUNK EGI z certyfikowanym interfejsem PROFINET-IRT został zaprojektowany z myślą o rozmaitych wymagających zastosowaniach z zakresu przenoszenia w branży elektronicznej, farmaceutycznej i laboratoryjnej. Te...
  • Urządzenia XV300 wyposażone są w przemysłowe wyświetlacze wysokiej rozdzielczości z technologią wielodotyku. To, w połączeniu z precyzyjnym i intuicyjnym interfejsem użytkownika, umożliwia operatorom pracę od zaraz. Dodatkowo te wysoko wyda...
  • Selektor napędów Panasonic umożliwia przeglądanie napędów z serii MINAS, wyszukiwanie ich w prosty sposób, a nawet porównywanie ze sobą. Dzięki wyszukiwaniu po słowach kluczowych i przy użyciu funkcji filtrowania, potrzeba zaledwie sekund a...
  • W trybie refleksyjnym sygnał ultradźwiękowy jest nieustannie odbijany przez zamontowany na stałe element odbijający wiązkę, tzw. element odniesienia. Jako elementu odbijającego wiązkę można używać odpowiednio ustawionego panelu z plastiku l...



KATEGORIE ARTYKUŁÓW
POLECANE ARTYKUŁY
Wydarzenia